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Critical behaviors of sheared frictionless granular materials near the jamming transition
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Critical behaviors of sheared dense and frictionless granular materials in the vicinity of the jamming tran-

sition are numerically investigated. From the extensive molecular dynamics simulation, we verify the validity
of the scaling theory near the jamming transition proposed by Otsuki and Hayakawa [Prog. Theor. Phys. 121,
647 (2009)]]. We also clarify the critical behaviors of the shear viscosity and the pair correlation function based

on both a mean field theory and the simulation.
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I. INTRODUCTION

Let us consider mechanical properties of grains which are
packed in a container. When the density is low enough and
the effect of gravity is negligible, there is no pressure acting
on the wall of the container. However, when the density ex-
ceeds a critical value, the pressure acting on the wall be-
comes finite. Such kind of transition for the rigidity or the
stress is known as the jamming transition.

Jamming is a key concept to characterize the transition of
athermal systems such as granular materials [1], colloidal
suspensions [2], emulsions and forms [3]. Liu and Nagel
suggested that a unifying description might be possible to
cover both glass transition in thermal systems and athermal
jamming transition [4]. Indeed, there are many similarities
between the jamming and the glass transition. For example,
the rheological properties of the jammed systems [5,6] are
similar to those of glassy materials [7], and the granular ma-
terials near the jamming transition point (point J) exhibit the
dynamical heterogeneity which is one of the characteristics
of glassy materials [6,8—13]. From these similarities, the
mode coupling theory for glassy materials [14-16] is applied
to granular materials, but it fails to describe the jamming
transition [17].

Recent studies have revealed that the jamming is the tran-
sition to appear in the pressure, the coordination number, the
elastic moduli [18,19], and the soft modes [20]. In particular,
Olsson and Teitel [6], and Hatano [21] numerically found
scaling relations for the shear stress, the pressure, and the
kinetic temperature, which are characterized by some critical
exponents. A similar scaling relation is observed in the simu-
lation of Josephson junction arrays [22]. These scaling rela-
tions indicate that jamming is a continuous transition in
which the stress is zero at the critical point. In order to un-
derstand the critical behaviors of the jamming transition, it is
important to determine the critical exponents. In the previous
paper [23], the authors theoretically obtained the critical ex-
ponents for the scaling relations of the shear stress, the ki-
netic temperature and the characteristic frequency, which
characterizes the collisional energy loss, for sheared friction-
less granular materials. They also numerically verified the
validity of their theoretical predictions for the linear spring
model [23].

In this paper, we will verify the validity of the predictions
in Ref. [23] for sheared frictionless granular materials in

1539-3755/2009/80(1)/011308(12)

011308-1

PACS number(s): 45.70.—n, 05.70.Jk, 47.50.—d

various situations. We will also discuss the behaviors of the
viscosity and the pair correlation function in details. In the
next section, we will summarize the theoretical predictions
by the present authors [23]. In Sec. III, we will compare the
results of our extensive simulations with the theoretical pre-
dictions. Section III consists of five subsections: Sec. III A
will be devoted to the explanation of the setup of our simu-
lations, in Sec. III B we will present various scaling plots to
verify the scaling theory, in Sec. III C we will discuss the
force law dependence of the critical exponents, and we will
explain the density dependence of critical variables in Sec.
I D. We will explain the results for nearly elastic cases in
Sec. IIT E. Section IV will be devoted to the explanation of
critical properties of the pair correlation function in the vi-
cinity of the jamming transition, which was not discussed in
Ref. [23]. In Sec. V, we will discuss and conclude our results.
In Appendix A, we will summarize the method for the theo-
retical prediction which contains some generalized results
beyond Ref. [23] based on a different method for the deriva-
tion. In Appendix B, we will derive some relations, which
are necessary to discuss the critical behavior of the pair cor-
relation function.

II. MEAN-FIELD THEORY

In this section, we briefly summarize the theoretical re-
sults in Ref. [23]. Let us consider D-dimensional granular
assemblies under an uniform shear with shear rate y. The
system includes N grains, each of which has the identical
mass m. The packing fraction of the system and the critical
fraction at point J are, respectively, denoted by ¢ and ¢;.
Throughout this paper, we assume that granular particles are
frictionless, where any contact force acts along the line to
connect two centers of mass of contacting grains. In most of
our arguments, we assume that the elastic interaction be-
tween the grain i located at r; and the grain j at r; is given by

fel(rij):k®(0-ij_rij)(0-i'_rij)A9 (1)

where k and r;; are the elastic constant and the distance be-
tween the grains r;=|r;|=|r;—r, respectively. o;;=(o;
+07;)/2 is the average of the diameter of the grain i and the
grain j with diameters o; and 0. ©(x) is the Heaviside step
function satisfying @(x)=1 for x=0 and ®(x)=0 for other-
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wise. Many researchers use the linear spring model (A=1)
associated with the viscous contact force

fvis(rij’vij,n) == 77®(°'ij - rij)Uij,m (2)

where 7 is the viscous parameter. Here, v;;, is the relative

normal velocities between the grains given by v;;,=(v;
-v))- r,j/r,j, where v; and v; are the velocities of the grain i

and the grain j, respectively. On the other hand, the Herzian

model [Eq. (1) with A=3/2] associated with the correspond-

ing viscous contact force

ijVij.n (3)

R
fvis(rij’vij,n) == 77®(Uij - rij) \‘"U'ij -r

is more realistic one for three-dimensional spheres.
In the previous paper [23], we introduced the scaling re-
lations

. b
T=Arp|D| ¢Ti(tD|q)|x¢/xy>’ (4)

S :AS,D|(D|y¢S+(SD|(D|y4,/y )

P= AP,D|(D|'V“’I’P: (PD

(7)

@P%> ©

o :AW,D|<D|Z‘I’W+<WD|(D|Z¢/Z

where @ = ¢— ¢;. The kinetic temperature 7, the shear stress
S, and the pressure P are respectively given by [24]

N
N G ) Y ®)

ND \ 2| 2m

1 pxlpz tgx zzx
S=_‘_/ 2 2 EE [.fel(rlj
m .

i j>i ri/

+fvis(”ij,Uij,n)] s (9)
p=— Elp|2 %2 Lfa(ri) + foid(rinvii )]
DV -1 2m T i TijlT el\Tij vis\'ij>Yijn s
(10)

where we have introduced p;=m[v,—c(r;)] with the average
velocity c¢,(r)=7yyd,, at the position r, V is the volume of
the system, and (-) represents the ensemble average. The
characteristic frequency w is defined by

w="—, (11)

where n is the number density. This w is reduced to the
collision frequency in the unjammed phase determined by
the balance between the viscous heating and the collisional
energy loss. 7.(x), S,(x), P.(x), and W,(x) are the scaling
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functions above point J (in the jammed phase). On the other
hand, the scaling functions below point J (in the unjammed
phase) are given by 7_(x), S_(x), P_(x), and W_(x). Equa—
tions (4)—(7) contain the critical exponents x4, X, Y4, ¥, y! &
yy, 24, and z,. It should be noted that Ay p, Agp, A p, Ap
tp, Sp, Wp, and pp are the constants depending only on the
dimension D.

From the scaling theory explained in Appendix A, there
are the scaling relations in the unjammed phase in the limit
y—0 as

T PIBAI, 5~ Plapaln,

P~ P02,

Similarly, 7, S, P, and w satisfy

zd,(l—l/z,/)‘ (12)

o~ YD

:/), o~ |D[,
(13)

in the zero shear limit of the jammed phase. The scaling
relations at point J, i.e., & =0, are given by

T~ 3% S~4% P~y o~  (14)

As explained in Appendix A and Ref. [23], the critical expo-
nents are given by

T~ ADPA, S~ [P, P~ 0P

TeT LR LIy YeTR Ty
27 A A
LA,y ==, z,=——. (15
Yo NWiara @t BTy 1Y)

Note that the scaling of the pressure and the determination of
the exponents y’, were not discussed in Ref. [23]. The deri-
vations which are a little different from the original one are
explained in Appendix A. We should stress that the expo-
nents are independent of the spatial dimension D, and the
characteristic feature of the jamming transition is the A de-
pendence of the critical exponents. Indeed, O’Hern et al.
found that the pressure behaves as P~ |®|* for unsheared
jammed systems in the vicinity of the jamming point. Hatano
also indicated that the critical exponents for the sheared
granular materials differ in the cases of A=1 and 3/2. Ex-
plicit A dependence of the exponents in Eq. (15) except for
y; for the sheared granular materials was obtained in Ref.
[23]. It should be noted that our theory can be generalized to
the case of the contact force

fel("ij)=(‘Tij—”ij)f("ij)~ (16)

Here, the exponent A in Eq. (15) should be determined from
the relation lim,]ﬂ,j Fry) = (oy— )A for this case. If we
use an analytic function .7-"(r ) such as the repulsive Lennard-

Jones force
12 A\ 13 \7
Fry; =_E[<ﬁ) —(ﬂl> ] (17)
ijj Tij Tij

the value of A should be A=1 because we can use the ex-
pansion  F(r;)=F'(0;)(0;—r;)+ F'(0,)) 1 2(03; rij)z_,_...
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Note that Eq. (17) differs from the usual form for the
Lennard-Jones potential in order to satisfy F(o;;)=0.

III. COMPARISON BETWEEN THEORY
AND SIMULATION

In this section, let us verify the validity of the theory [23]
by the molecular dynamics simulation. As stated in Introduc-
tion, we have already confirmed that all of our results of the
simulation for A=1 under one size distribution of grains with
fixing the strength of inelasticity are consistent with the
theory [23], but nobody has checked its validity for general
A under various situations. Thus, we will perform extensive
simulations with changing A, the size distribution, and the
inelasticity etc.

In the first part (Sec. III A), we explain the details of our
model. In the second part (Sec. III B), we demonstrate the
validity of the scaling theory given by Egs. (4)—(7) with Eq.
(15) from the test of scaling plots under various conditions.
In the third part (Sec. III C), we check the theory for the A
dependence of the critical exponents. In the fourth part (Sec.
I D), we discuss @ dependences of the characteristic fre-
quency w in the jammed region and the viscosity u=S/7y in
the unjammed region. In the last part (Sec. III E), we explain
the behaviors for nearly elastic cases, while the results in the
first five parts are obtained for strongly dissipative cases.

A. Setup

We examine three different systems on dispersion of di-
ameters of grains. The first system we call the polydisperse
system consists of four types of grains, and the diameters of
grains are 0.70y, 0.80, 0.90y, and o, where the number of
each type of grains is N/4. The polydisperse system has been
studied in Ref. [23], where the critical fraction is estimated
as ¢;=0.84285 for D=2, ¢;=0.644 55 for D=3 or ¢,
=0.4615 for D=4 [23]. The second system which we call the
bidisperse system consists of two types of grains. The diam-
eters of grains are 50/7 and o, where the number of each
type of grains is N/2. The bidisperse system has been stud-
ied by many researchers [18,19,25,26], and the critical den-
sity ¢, is known as 0.648 for D=3 by the numerical simu-
lation of static granular packings [18]. The final system we
call the monodisperse system consists of only one type of
particles, whose diameters are o,. The critical density ¢; of
the monodisperse system is believed to be 0.639 for D=3
from a numerical simulation [19].

The time evolution equations of the position r; and the
velocity v; of the ith particle are given by

dr;

—=p, 18
v, (18)

dv; r;
md_ = 2 {fel(rij) +fvis(rij’vij,n)}_l, (19)

b j#i Tij
where the elastic force f(r;;) is given by Eq. (1) for most of
cases except for the case of the repulsive Lennard-Jones po-

tential. fy;s(r;;,v;;,) given by Egs. (2) or (3) is the viscous
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FIG. 1. (Color online) Collapsed data of the shear rate depen-
dence of the kinetic temperature T in the polydisperse system (N
=2000) with A=3/2 using the scaling law, Eq. (4), for D=2, 3, and
4. The dashed line, the dotted line and the solid line are proportional
to v, 7'/2, and ¥, respectively. The legends show the dimension D
and the volume fraction ¢ as (D, ). The critical exponents esti-
mated from Eq. (15) are x,=9/2 and x,=14/11.

contact force between particles. In order to realize a uniform
velocity gradient y in y direction and macroscopic velocity
only in the x direction, we adopt the Lees-Edwards boundary
conditions.

In our simulation with the elastic contact force given by
Eq. (1), m, oy, and k are set to be unity, and all quantities are
converted to dimensionless forms, where the unit of time
scale is \’mU(I)_A/k. In the case of the contact force given by
Egs. (16) and (17), € in Eq. (17) is set to be unity instead of
k, and the unit of time scale is Vmo'zo/ €. We adopt the elastic
constant k=1.0 or e=1.0, and the viscous constant 7=1.0 for
most of cases except for nearly elastic cases in Sec. IIT E.
This situation corresponds to the constant restitution coeffi-
cient ¢=0.043 for the linear spring model. We use the leap-
frog algorithm, which is second-order accurate in time, by
using the time interval Ar=0.2 for the cases of the contact
force given by Eq. (1) with checking the convergence until
At=0.05. In the simulation with the contact force given by
Egs. (16) and (17), we use Ar=0.01.

4
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FIG. 2. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S for the polydisperse system (N=2000)
with A=3/2 using the scaling law, Eq. (5), for D=2, 3, and 4. The
dotted line and the solid line are proportional to 3> and 3?7, respec-
tively. The legends show the dimension D and the volume fraction
¢ as (D, ). The critical exponents estimated from Eq. (15) are
y¢=3/2 and y,=6/11.
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FIG. 3. (Color online) Collapsed data of the shear rate depen-
dence of the pressure P for the polydisperse system (N=2000) with
A=3/2 using the scaling law, Eq. (6), for D=2, 3, and 4. The dotted
line and the solid line are proportional to > and 73';, respectively.
The legends show the dimension D and the volume fraction ¢ as
(D, ¢). The critical exponents estimated from Eq. (15) are y 'dJ
=3/2 and y;=6/ll.

B. Scaling plots

Figures 1-4 show the scaling plots of the polydisperse
system with A=3/2 based on Egs. (4)—(7) with Eq. (15) for
the various dimensions D=2, 3, and 4. (See Ref. [23] for the
scaling plots of the polydisperse system with A=1.) We use
Eq. (3) for the viscous contact force. Here, the number of the
particles N is 2000, and the shear rate 7y is ranged between
5% 1077 and 5% 1073 for D=2, 3 and between 5 X 107 and
5X107* for D=4. We also use the amplitudes and the ad-
justable  parameters  (tp,A, p.Sp.A;p.PpsAppsWpsAy p)
=(0.01,15.0,0.03,0.02,0.02,0.3,0.1,0.12) for D=2, (0.01,
6.0, 0.04, 0.03, 0.025, 0.3, 0.15, 0.25) for D=3, (0.1, 0.45,
0.05, 0.05, 0.04, 0.5, 0.1, 0.45) for D=4. All of the data
converge to the universal master curves. These results verify
the validity of our theoretical predictions in Eq. (15).

In Figs. 5 and 6, we show the scaling plots of S for the
bidisperse system and the monodisperse system with A=1
and D=3, respectively, where both systems include N

10°[x (2,0.823) O (2, 0.8432)

+(2,0.841) = (2,0.845)

1) * (2,0.8428)0 (2, 0.873)
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. 20/ 2
wp v/ oY

FIG. 4. (Color online) Collapsed data of the shear rate depen-
dence of the characteristic frequency w for the polydisperse system
(N=2000) with A=3/2 using the scaling law, Eq. (7), for D=2, 3,
and 4. The dotted line and the solid line are proportional to ¥ and
v*7, respectively. The legends show the dimension D and the vol-
ume fraction ¢ as (D, ¢). The critical exponents estimated from Eq.
(15) are z4,=3/4 and z,=3/11.
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FIG. 5. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S for the bidisperse system (N=4000) with
A=1 using the scaling law, Eq. (5), for D=3. The dotted line and
the solid line are proportional to > and 7’7, respectively. The leg-
ends represent the volume fraction ¢. The critical exponents esti-
mated from Eq. (15) are y,=1 and y,=2/5.

=4000 particles. The viscous contact force is given by Eq.
(2), and the shear rate ¥ is ranged between 5X 1077 and 5
X 1075, The amplitude and the adjustable parameter are
(sp,A;p)=(0.035,0.04) for the bidisperse system and
(0.025, 0.035) for the monodisperse system. These scaling
plots support the validity of our prediction. The scaling plots
for T, P, and w for the bidisperse and the monodisperse
systems also exhibit elegant scalings, but we omit these fig-
ures in this paper.

We have checked the validity of our scaling theory in
larger systems. Figure 7 shows the scaling plot of S in the
three-dimensional monodisperse system with N=20 000 par-
ticles, where the shear rate 7 is ranged between 5 X 107® and
5X 107*. The parameters and the guide lines are the same as
those for Fig. 6. This scaling supports the validity of our
theory even in the larger system.

In order to verify the validity of our theory in more gen-
eral cases than that of Eq. (1), we examine the scaling plot
for S in the three-dimensional monodisperse system with the
elastic contact force given by Egs. (16) and (17) and the
viscous contact force given by Eq. (2) in Fig. 8. Here we use

S 10

W » x 0.6190 * 0.63896
10 o + 0.6290 = 0.6391
* * 0.6310 a 0.6400
R 0 0.6330 v 0.6440
g x 0.6350 v 0.6490
10 0.6380
10% 1072 1 102 107 108

. Vo !y
sp i/ 1o

FIG. 6. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S for the monodisperse system (N
=4000) with A=1 using the scaling law, Eq. (5), for D=3. The
dotted line and the solid line are proportional to 37 and 37, respec-
tively. The legends show the volume fraction ¢. The critical expo-
nents estimated from Eq. (15) are y,=1 and y,=2/5.
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FIG. 7. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S in the larger monodisperse system (N
=20 000) with A=1 using the scaling law, Eq. (5), for D=3. The
dotted line and the solid line are proportional to 4> and 327, respec-
tively. The legends show the volume fraction ¢. The critical expo-
nents estimated from Eq. (15) are y4=1 and yy=2/5.

the number of the particles N=2000, and the shear rate 7 is
ranged between 107> and 10>, The amplitude and the adjust-
able parameter are given by (sp,A; p)=(0.004,3.0), where
we adopt the exponents given by Eq. (15) with A=1. The
scaling in Fig. 8 supports the validity of our theory for the
elastic contact force given by Eq. (16).

C. A dependence of the critical exponents

In order to verify the A dependence of the critical expo-
nents, we plot y, and y’y versus A for the polydisperse system
with D=2, N=4000, and the viscous force given by Eq. (2)
in Figs. 9 and 10, respectively. Here, in order to obtain Figs.
9 and 10, we have estimated y, and y ;, respectively, from the
shear stress S(7y, ¢) and the pressure P(7y, @) at ¢p=¢h; as

_ log[S(y1, b)) 1—10g[S(¥2, ¢))]

, 1t (20)
log 1 —log 1
4
s
Agplof'®
100
x 0.6090 a 0.6398
+ 0.6190 0.6400
4 * 0.6290 v 0.6420
10 0 0.6350 © 0.6440
)** . 0.6380 ¢ 0.6490
0.6391 © 0.6590
S 06395  * 0.6690
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FIG. 8. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S in the monodisperse system (N=2000)
with the contact force given by Egs. (16) and (17) using the scaling
law, Eq. (5) for D=3. The dotted line and the solid line are propor-
tional to 7 and 7', respectively. The legends show the volume
fraction ¢. The critical exponents estimated from Eq. (15) with A
=1are yy=1 and y,=2/5.
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FIG. 9. Plot of y, versus A for the polydisperse system (N
=8000) with D=2.

V= log[P(y1,¢,)] - log[ P(¥,, )]
Y s

: : (21)
log ¥, —log 7,

for  (9,7)=(5x107,1.5x107%), (1.5X107%,5%1079),
(5X107°1.5%107%), (1.5X1075,5%x107%), (5%x1077,5
X 107%), (5 107°,5 X 107), and plotted the averages of y,,
and y, for different (¥;,7%,) with the error bars, whose
lengths are twice of the standard deviation of y, and y ; The
exponent y,, reasonably agrees with the prediction Eq. (15) in
the wide range of A. Although y; is a little deviated from the
theoretical prediction, we believe that the deviation becomes
smaller if we use the data for smaller y and larger N.

Figures 11 and 12 demonstrate whether the exponents for
S predicted by Eq. (15) can be used for the scaling plots of
A=0.5 and 2, respectively. The shear rate 7y is ranged be-
tween 5X 1077 and 5% 107>. The amplitude and the adjust-
able parameter are (sp,A;p)=(0.015,0.05) for A=0.5 and
(0.05, 0.02) for A=2.0, respectively. These scalings in Figs.
11 and 12 as well as the evaluated exponents by Egs. (20)
and (21) strongly support the validity of the theoretical pre-
dictions in Eq. (15) for arbitrary A. Thus, our theory can be
used for any A.

0.
Yy )

0.4 e

e
_ Theory
. Numerical
(e
0 1 2

A

FIG. 10. Plot of y; versus A for the polydisperse system (N
=8000) with D=2.
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FIG. 11. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S for the polydisperse system (N=_8000)
with A=0.5 using the scaling law, Eq. (5), for D=2. The dotted line
and the solid line are proportional to % and 37, respectively. The
legends show the volume fraction ¢. The critical exponents are
estimated from Eq. (15) as y4,=1/2 and y,=2/9.

D. ® dependence of critical variables

Here, we examine @ dependences of quantities predicted
in Egs. (12) and (13) with Eq. (15). First, we plot @ versus
|®| in the jammed phase for the two-dimensional polydis-
perse systems (N=2000) with A=3/2 in Fig. 13. We adopt
Eq. (2) for the viscous contact force. Note that the corre-
sponding results for A=1 have been reported in [23]. As the
shear rate  decreases, w approaches w~ |®|¥* as predicted
in Eq. (13) with Eq. (15). There is a plateau in the small y
region, but the value of it decreases as ¥ in the limit y
—0, which can be predicted from Eq. (7) because W, (x)
~ x% with x=y/|®|¢*r— oo,

Next, we show @ dependence of the viscosity u=S/7y in
the unjammed phase, which is predicted as u~ |P[™
~|®|™ from Egs. (12) and (15). We note that the critical
exponent for u is independent of A and D. Figure 14 in-
cludes the data of w/ ¥ as a function of |®| for the polydis-
perse system (N=2000) with A=1 and 3/2. We, respectively,
adopt Egs. (2) and (3) for the viscous contact forces in the
cases of A=1 and 3/2. Both of the data for A=1 and 3/2

S 10
AS,D|¢’Ty¢ 1

o
o

x 0.8030 0.8432
+0.8130 4 0.8450
£ * 0.8230

. 0.8530
1074 P 00.8330 v 0.8630
S 0.8410 < 0.8730
+ 0.8428 © 0.8830
x 0.8430
10% 2 6
107" 10 1 10° 10 10

sp v/ oY

FIG. 12. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S for the polydisperse system (N=8000)
with A=2.0 using the scaling law, Eq. (5), for D=2. The dotted line
and the solid line are proportional to 7> and 3?7, respectively. The
legends show the volume fraction ¢. The critical exponents are
estimated from Eq. (15) as y4=2 and y,=2/3.
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FIG. 13. Plots of w versus ® of the polydisperse systems for
D=2 and A=3/2 with y=5X107%, 5x 1077, and 5x 1078,

satisfy the theoretical prediction w/y~|®|™ as predicted,
although there is a plateau when |®|— 0. The value of the
plateau proportional to v can be understood by Eq. (5)
[23].

There are some previous studies on the divergence of the
viscosity u. For example, Losert ef al. [27] observed expo-
nents larger than 1 from their experiment. The critical expo-
nent of the shear viscosity for foams and emulsions in Ref.
[6] is between 1 and 2. For colloidal suspensions, the viscos-
ity is believed to diverge as |®|™ [29]. Garcia-Rojo et al.
[28] reported that the scaled viscosity diverges as a/\T
~(¢p,— @) for ¢,< ¢, in two-dimensional elastic mono-
dispersed hard disks. This result is contrast to our prediction
that the viscosi;y scaled by the temperature VT diverges at
point J as u/\NT~ (¢;— )3, obtained from Eq. (12) with
Eq. (15).

In order to clarify whether our prediction is valid for
sheared frictionless granular materials in the vicinity of the
jamming transition, we examine the possibility that the vis-
cosity satisfies u/\T~ (¢p,— @)™ with a fitting parameter ¢,
[28] in Fig. 15 for the bidisperse system (N=4000) with D
=3,A=1,and y=5X 1077, Actually we can fit the data of our
three-dimensional simulation by w/ V"T~(¢M— ¢)7!, but the
viscosity is still finite even for ¢> ¢M:O.632. We, thus, con-
clude that the viscosity w in the sheared granular materials
does not satisfy u/\T~ (¢,—)~!, and the behavior of w is

- Y — — !
H/’Y |(I)|-4\\ A=3/2g ‘{—5X1076
108 \ e Y=5x10
a Y=5x107}
. =1L y=5x107
10 N 0 y=5x107
\ g
5x 10
10°*
\
10° 10° 10"

FIG. 14. Plots of w/ 7y versus ® of the two-dimensional polydis-
perse systems for and A=1 and 3/2 with y=5X 1073, 5X 107°, and
5x1077.
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0.63
o

0.64 0.65

FIG. 15. w/NT as a function of ¢ for the three-dimensional
bidisperse system (N=4000) with A=1 and y=5X 10~7, where the
solid line and the dashed line are proportional to (cﬁ#—d))’l and
(¢p)— )73, respectively.

consistent with our prediction. Here, we should note that our
theory is no longer valid for the two-dimensional monodis-
perse system, where the shear band occurs (Fig. 16), which
is not assumed in our theory.

Berthier and Witten [25,30] reported that the relaxation
time in the zero-temperature limit of the three-dimensional
equilibrium bidisperse system diverges at ¢;=0.635, which
is smaller than ¢;=0.639. Although this idea might be attrac-
tive to characterize universal feature of the jamming transi-
tion, we could not find such divergence, as shown in Fig. 15,
for frictionless sheared granular materials near the jamming
transition.

E. Nearly elastic cases

One might think that our scaling theory is only valid when
the dissipation of the system is strong enough. Indeed, we
have used the viscous constant 7=1.0, which corresponds to
the restitution coefficient e=0.043 for the linear spring
model. In order to check the validity of our theory in the
nearly elastic system (e=1), we perform the numerical

FIG. 16. The snapshot of the two-dimensional monodisperse
system (N=2401) with A=1, k=1.0, and =0.002 25. We use Eq.
(2) for the viscous contact force. The shear rate is =5 X 107, and
the density is ¢=0.80.

PHYSICAL REVIEW E 80, 011308 (2009)

% 0.6090

0.6190 0.6400
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FIG. 17. (Color online) Collapsed data of the shear rate depen-
dence of the shear stress S in the nearly elastic monodisperse sys-
tem (N=2000) with A=1 using the scaling law, Eq. (5), for D=3.
The dotted line and the solid line are proportional to 37 and 37,
respectively. The legends show the volume fraction ¢. The critical
exponents estimated from Eq. (15) are y,=1 and y,=2/5.

simulation of the three-dimensional monodisperse system
with A=1 and #=0.018, which corresponds to the restitution
coefficient e=0.96. We use the viscous contact force in Eq.
(2) with the number of particles N=2000. The shear rate 7 is
ranged between 5 X 107% and 5 X 10~*. The amplitude and the
adjustable parameter are given by (sp,A;p)=(0.03,0.04).
The scaling plot of S in this system is shown in Fig. 17. This
figure supports the validity of our scaling even in the nearly
elastic system.

IV. PAIR CORRELATION FUNCTION

In this section, we discuss the behaviors of the spatial
correlations in the vicinity of the jamming transition. In par-
ticular, we focus on the critical behaviors at the first peak of
the pair correlation function. We restrict our interest to the
monodisperse system where each particle has an identical
diameter oy,

Let us discuss the spatial correlation of the density field.
Figures 18 and 19 present the isotropic parts of the structure
factor S(k) and the pair correlation function g(r) for the
three-dimensional monodisperse system, respectively. Here,
g(r) and S(k), respectively, satisfy [31]

1 1
g =<5 s 22 8r-ry), (22)
SDVD n\N ij#i
4 v=5 10"4¢ 0.629
e ¥=5Xx ,0=0.
S(k) 7=5x10" g 0630
3 —-- y=5x10 0- 0640
o= §=5x10°¢-0620
5 _ ;,:5X1o'5,¢=0.639
4{:5)(10_5,(1):0.649
1
%% 10 20 30

k

FIG. 18. Structure factor S(k) in the three-dimensional monodis-
perse system (N=20000) with ¢=0.629,0.639,0.649 and y=5
X107 and 5X 1073,
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3 — y=5x1o:¢ 0.629
- - - ¥=5x10 0.639
a(r) 7=5x10 0
--- y= 5x105¢ 0.649
2 ——— ¥=5x10 ,¢=0.629
-5
—— §= 5x10 ,0=0.639
------ 7=5x10 ,0=0.649
1
0

FIG. 19. Pair correlation function g(r) in the three-dimensional
monodisperse system (N=20 000) with ¢=0.629,0.639,0.649 and
¥=5X10"* and 5 X 1073.

JIpp- 1(kr)

S(k)=1+(27T)D/2nJ drr’ g ()(k =g

(23)

where Jp,_(kr) is the Bessel function, Sp, is the surface area
of the D-dimensional unit sphere given by Sp
=27"2/T(D/2) with the Gamma function I'(D/2). We use
A=1, the viscous contact force given by Eq. (2), and the
number of the particles N=20 000. Because the isotropic
parts of the spatial correlations are dominant in our system,
we only focus on the critical properties of the isotropic parts
in this section. The first peak of g(r) is larger than 3 which is
the maximum value of the vertical axis of Fig. 19. From
Figs. 18 and 19, it seems that there is no obvious dependence
of S(k) and g(r) on ¥ and ¢, but the height of the first peak
go of g(r) strongly depends on y and ¢. We plot the depen-
dence of the first peak of g(r) on ¥ for small r— oy region in
Fig. 20, in which the first peak g, becomes higher and the
width of the half-height of the first peak %, becomes nar-
rower as 7y decreases.

The dependence of the peak on ¢ and 7y can be roughly
estimated from our scaling law for the pressure P in Eq. (6).
Indeed, the coordination number Z and the pressure P, re-
spectively, satisfy

Z= SL der_lg(r), (24)
2 Jy
2 o
~ Spn kJ drrP(oy—r)*g(r). (25)
0

The derivation of these equations is briefly explained in Ap-
pendix B. Since the first peak near oy is characterized by the
peak value g, and the width h,, Eqs. (24) and (25) are ap-
proximated by

Z~ San ’ der_lgo ~ gol’lo{l + O(h())}, (26)

oo—hy

PHYSICAL REVIEW E 80, 011308 (2009)
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gy | e =X 107
2000 5 x10°
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1000
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"0.003 0.003

-0y
FIG. 20. The first peak of pair correlation function g(r) in the

three-dimensional monodisperse system (N=20 000) with A=1 and
#»=0.639 for various shear rates 7.

a0
P~ SD”lZJ<
e

70~ho

d”FDk(O'o - ”)Ago’ -~ h€+180{1 + O(ho)}~

(27)

With the aid of Eq. (26), we find that g, and A satisfy the
relation near the point J

goho ~ const., (28)

where we have used the known result on the coordination
number Z=2D for the frictionless granular particles near the
point J. Substituting Eq. (28) into Eq. (27), we obtain the
relation between g, and the pressure P

go~ PVA. (29)

From Egs. (12), (15), and (29), the height of the first peak
value g, in the unjammed phase is given by

go~ ¥ A@YA. (30)
Similarly, from Egs. (10), (15), and (29) g, satisfies
~ |®[! (31)

in the jammed phase, which is consistent with the numerical
result of the unsheared jammed system [19]. At the critical
point, i.e., ®=0, thus, g, is given by

80~ 7—2/(A+4) (32)
from Egs. (11), (15), and (29).

In order to check our predictions in Egs. (30)—(32), we
plot g, versus 7y for various densities in Fig. 21. The numeri-
cal data are consistent with the theoretical prediction in
which g, is proportional to %22 in the unjammed phase [see
Eq. (30)], but g, is almost a constant in the jammed phase
[see Eq. (31)], and g, satisfies go~ 7 2®+¥ at point J [see
Eq. (32)].

Figure 22 examines the validity of Eq. (31) in the zero
shear limit of the jammed phase, in which g, seems to satisfy
go~1/|®|. On the other hand, g, tends to satisfy g,7**
~ |®|** in the unjammed phase as in Eq. (30) (see Fig. 23).

V. DISCUSSION AND CONCLUSION

This section consists of two parts. In the first part, we will
discuss our results, and we will conclude our work in the
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8
10 « N\ ey = 0.629
N -+ ¢=0635
. N % -0=0.639
Jo 10 + N 3-0=0642

X, —#--0=0649

FIG. 21. The height of the first peak g, of g(r) as a function of
v for the three-dimensional monodisperse systems (N=20 000)
with A=1 for various densities ¢. The critical density is ¢;
=0.639. The solid line is proportional to ¥2/**%_The dashed line

is proportional to %4,

second part. In the first part, let us compare our results with
those by Hatano [21], discuss the growing length scale near
point J, the long-range spatial correlation, and the scaling
laws for the Langevin dynamics and the frictional particles.

A. Discussion

Let us compare our results with those by Hatano [21].
Hatano estimated the values of the exponents as

xp=2.5, x,=13, yp=12,
y,=0.63, o =12, y'7= 0.57, (33)
for A=1, and
xp=32, x,=13, yp=138,
yy=0.75, ys=138, y;= 0.72, (34)

for A=3/2. The system analyzed in Ref. [21] corresponds to

PHYSICAL REVIEW E 80, 011308 (2009)
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FIG. 23. The plots of g,7*'* versus |®| in the unjammed phase
for the monodisperse system (N=20000) with A=1 for various
shear rates 7. The dashed guide line is proportional to |d[*4.

our polydisperse system, but these values are different from
those in Eq. (15). Here, let us clarify the origin of the differ-
ences. (i) The estimation of the critical exponents strongly
depends on the range of y. The value of ¢; and the range of
v in Ref. [21] are larger than ours. If we adopt ¢, and the
range of ¥ in Ref. [21], we can recover his scaling laws in
Egs. (33) and (34) as shown in Fig. 24, while we find the
obvious violation of his scaling (Fig. 25) in the small ¥ re-
gion (7<107%). On the other hand, our scaling is still valid
as shown in Fig. 26 for ¥<<107*. In order to extract the
critical properties, it is needless to say that we should use the
data in the small y region. Hence, our prediction for the
exponents is more appropriate than Hatano’s estimation. (ii)
The estimated exponents in Egs. (33) and (34) cannot be
valid even when we adjust the value of ¢; as the fitting
parameter in the small y region. The value of ¢; is well
established by the simulation of the sphere packing for the
bidisperse system and the monodisperse system [18,19]. The
scaling plots using the estimated value of ¢; (Figs. 5 and 6)
evidently support the validity of our prediction.

There are some studies to indicate the diverging time
scale near point J [13,20]. Indeed, in the scaling relations of
T, S, P, and w in Egs. (4)—(7) with Eq. (15), the shear rate y

4
10 N 10000
AN my=5x10"2 S
gO AN B : -6 S
®[ ofy=5x10 of 0 100 g
3 o O . -7
10 N e¥=5x10 )
(o] \.\ 1
. RN ¥ x ¢=0500 © ¢=0.650
2 | |
10 }\\ 0.01 + ¢ =0.600 ® ¢=0.660
‘hq * * 0=0630 » ¢=0.700
N 0.0001 ¢ =0.645
10 4 3 > 1 100 10000
- - - _ | ;
10 10 10 10 y / |d)ry¢ y

FIG. 24. (Color online) The scaling of the shear stress S/|®[¢

FIG. 22. The plots of g, versus |®| in the jammed phase for the
three-dimensional monodisperse system (N=20 000) with A=1 for
various shear rates . The dashed guide line is proportional to |®|".

for the polydisperse system (N=4000) with A=1 using Eq. (33) as
a function of the scaled shear rate /|®[*#*v for 10™*=y=107",
0.5=¢=0.7 with D=3.
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FIG. 25. (Color online) The scaling of the shear stress S/|®|¢
for the polydisperse system (N=4000) with A=1 using Eq. (33) as
a function of the scaled shear rate /|®["#¥» for 5X 1077 <=5
X 1075, 0.624 =< $=0.652 with D=3.

is scaled by the same diverging time scale 7~ |®[~4+*"2 For
conventional critical phenomena, the divergence of the time
scale is associated with the diverging length scale. Therefore,
there are many papers to discuss growing length scale in the
vicinity of the jamming transition [6,8—13,20,32]. However,
the length scale in the previous studies is as much as the size
of several particles in their papers, and it is not clear whether
the length scale diverges at point J. We, thus, conjecture that
the length scale might be unrelated to determine the critical
exponents. The success of our mean field theory supports the
validity of this conjecture.

In relatively dilute sheared systems, we know the exis-
tence of the long-range correlation [33-36]. The existence of
the long-range correlation is only confirmed in the relatively
dilute systems such as ¢=0.50 for the three dimensional
case. We, thus, still do not know whether there is the long-
range correlation in the jammed systems, and the role of the
correlation. We will discuss the long-range correlation in the
jammed systems elsewhere.

The similar scaling relations with different values of the
exponents are observed in the zero-temperature limit of
Langevin thermostat system, where the Newtonian law S
o 7 is held in the unjammed region [6]. However, we cannot
extend our simple theory to this system because the charac-
teristic frequency defined by w=yS/(nT) is always constant
in this system, which differs from the scaling relation (7). We
will discuss the results of this situation elsewhere.

In this paper, we restrict our interest to the frictionless
particles. When the particles have friction, the situation will
be changed completely. For example, the critical density ¢;
of the frictional particles in the static granular packings be-
comes smaller than that of the frictionless particles [37] and
depends on the packing process [26,38]. Thus, critical prop-
erties of the scaling in the sheared dynamical systems of
frictional particles should differ from the frictionless assem-
blies. This also will be our future work.

B. Conclusion

In conclusion, we have extensively checked the validity
of the mean-field theory proposed in Ref. [23] numerically,

PHYSICAL REVIEW E 80, 011308 (2009)
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FIG. 26. (Color online) The scaling of the shear stress S/|®|'¢
for the polydisperse system (N=4000) with A=1 using Eq. (15) as
a function of the scaled shear rate y/|®]’#*y for 5X 1077 <=5
X107, 0.624 =< $=0.652 with D=3.

and we demonstrate that most of all our numerical results are
consistent with the theoretical predictions in Eq. (15). Thus,
we may conclude that the jamming transition for frictionless
sheared granular materials is a continuous transition in which
the critical exponents are independent of the spatial dimen-
sion and are determined by the local elastic force between
contacted grains.

We also confirm that the viscosity diverges at point J as
(¢,— ¢d)~*. Essential new findings beyond Ref. [23] are the
critical behaviors of the first peak of the pair correlation
function given by Egs. (30)—(32), which are also consistent
with our numerical simulation.
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APPENDIX A: DERIVATION OF THE VALUES OF THE
CRITICAL EXPONENTS

In this appendix, we theoretically determine the values of
the critical exponents in Eq. (15). The derivation is parallel
to that in Ref. [23] but contains some generalizations with
the help of a simplified argument.

At first, we should note that the scaling functions 7~ (x),
S+(x), P+(x), and W (x) satisfy

lim 7,(x)=x, limS,(x)=1,

x—0 x—0

lim P,(x)=1, lim W,(x)=1, (A1)
x—0 x—0
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lif(l) T (x) =x%, )lclil(l) S_(x) =2,

}Ln(l) P_(x) =x%, )ICLH(I) W_(x)=x, (A2)
A121310 To(x)=x", il_rg S.(x)=x,
lim P.(x) =27 lm Wa(x) = x> (A3)

X—0 X—00

The scaling relations (12)—(14) are obtained from Egs.
(A1)-(A3) with Egs. (4)—(7).

Let us assume that the inverse of the shear rate ' can be
scaled by a characteristic time scale. Therefore we can as-
sume that the ratios between the exponents x,/x,, y4/y,,
y(’f,/ y;, and z,4/z,, in the scaling laws Egs. (4)—(7) are com-
mon as

Yo _Z¢ (Ad)
Yy
In other words, the characteristic time scale 7 exhibits critical
slowing down as 7~ |®|~®. This property has already been
indicated by Ref. [21]. It should be noted that we can deter-
mine the exponents without this assumption [23].

Substituting Eq. (12) into Eq. (11) with Eq. (A4), we ob-
tain the relation between the exponents as

Tp=Vp— Xyt Q. (A5)

Let us assume that the pressure in the jammed phase (P
>0 and y—0) converges to that of unsheared jammed phase
satisfying P~ ®* [19]. Hence, comparing the scaling prop-
erty of P in Eq. (13) with P~ ®*, we find the relation

ye=A. (A6)

We also assume that Coulomb’s frictional law is held in
granular systems [39]. Thus, S/P is independent of & [23]
and we obtain

Yo=Y (A7)
with the aid of Eq. (13).

We can use the properties of the cutoff frequency f, in the
density of state in the jammed phase, which satisfies f.
~ P [20]. Since we expect that there is only one time scale,
it is reasonable to assume that the characteristic frequency w
in the limit y— 0 can be scaled by the cutoff frequency f..
Thus, we obtain

PHYSICAL REVIEW E 80, 011308 (2009)

1
2= Ey (’b (A8)
Finally, let us use a similar argument on the characteristic
frequency w in the unjammed phase to that in the jammed
phase. Since the characteristic frequency o is estimated as
o~ \T/m/l(®) with the mean-free path I(®), which is
evaluated as (/D¢,)|®| in the vicinity of point J, we obtain

X¢,:2Z¢+ 2, (Ag)

where we have used Eq. (12).
From Eqs. (A5)—(A9), the exponents a, x4, ¥ 4, y(’ﬁ, and z,4
are given by

A+4 A

o= y _X(I)=2+A, yq)=A, y&)=A, p= <.

2 2
(A10)

The exponents x,, y,, y’, and z, are obtained from Egs. (A4)
and (A10). Hence, we have determined all the critical expo-
nents as Eq. (15).

APPENDIX B: THE EXPRESSIONS OF P AND Z BY g(r)

In this appendix, we derive Egs. (24) and (25). The coor-
dination number Z is given by Z=M/N, where M is the
number of the points of contact. Since M is given by the
number of the pairs whose distances are smaller than oy, Z is

given by
—lj%d Iy S (B1)
_N . r > ~ < r rl'j .

Substituting Eq. (22) into this equation, we obtain Eq. (24).

Since the contribution to the pressure P from the elastic
force is dominant in our system, we approximate P in Eq.
(10) with the aid of Eq. (22) as

P L<E > ri]fel(rij)>

2DV Tz

1 0
=ﬁ . drrfel(r)<;j§lr,]5(r—r”)>
SDn2

= T derfel(r)g(r). (BZ)
0

Substituting Eq. (1) into Eq. (B2), we obtain Eq. (25).
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